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Abstract

In order to find a closed form solution of the Ramsey growth model usually
author’s take consumer preferences and production technology as given. Espe-
cially with the assumptions of consumer CRRA preferences and Cobb-Douglas
production technology Smith (2006) derived the widely adopted solution in case
of capital’s share equals consumer’s risk aversion parameter, which implies con-
sumption per capital to be constant. We skip the assumption of a given produc-
tion technology and replace this by the assumption that consumption per capital
follows a logistic growth process. In this case we derive the general solution, for
the evolution of capital and consumption in time. Not surprisingly this includes
the solution formerly described. But additionally, at least in a technical way, we
obtain a closed form solution with a non linear dependence between consumption
and capital.
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1 Introduction

The Ramsey growth model (Ramsey (1928)), further elaborated by Cass (1965) and
Koopmans (1963) is one of the most examined and best understood models in economics
and can be found in almost every standard textbook of macroeconomic theory (i.e.
Barro and Sala-i-Martin (2003), Blanchard and Fischer (1989) or Romer (2005)).

Not surprisingly the general formulation of the Ramsey growth model exhibits no ex-
plicit solution, since consumer preferences and production technology are not further
specified, except for assumptions about monotonicity and curvature of the functions
and constant economies of scale in production. But even if consumer preferences and
production technology are explicitly defined closed form solutions are only known un-
der further restrictions such as a constant gross savings rate or a hundred percent
depreciation on capital.1 For an excellent survey see Smith (2006). In particular Smith
(2006) provides a closed form solution for production technology to be Cobb Dou-
glas, consumer preferences to be CRRA and consumer’s risk aversion parameter equals
capital’s share.2 This is shown by converting the Ramsey differential equations via
Bernoulli transformation into a simple autonomous logistic equation, which is a special
case of a Bernoulli differential equation. Although this parameter setting is widely
adopted in the literature3 we think, we can give a more general answer to the question
of the existence of a closed form solution of the Ramsey growth model. In order to
tackle the problem, in some sense we follow an inverse approach similarily to Chang
(1988). In Chang (1988) production technology is fixed to be Cobb-Douglas in order
to derive consumer preferences, if consumption follows some standard path. We take
the other part as fixed starting with consumer preferences to be CRRA and ask which
production technology satisfies the Ramsey model, if consumption per capital follows
a logistic growth process.

As we can show the whole problem reduces to the task to sequentially solve some
Bernoulli differential equations, whereby in the last step we use a standard transfor-
mation in order to obtain a hypergeometric function. In our eyes this simplifies the
mathematics in some sense compared to Smith (2006), Boucekkine and Ruiz-Tamarit
(2008), Scarpello and Ritelli (2003) or Germanà and Guerrini (2005) who apply also
hypergeometric functions. It turns out, that the production function necessarily con-
sists of a Cobb-Douglas part while in a wide range of parameter settings the other
part must be linear in capital, which follows from the constancy of consumption per
capital implied by the transversality condition. This repeats in a general way the result
of Smith (2006). But additionally in other parameter constellations we obtain a non
linear dependence between consumption and capital.

1An exception constitutes the approach of Mehlum (2005), who defines only production technology
to be Leontief and consumer preferences to be CRRA for the calculation of a closed form solution.

2Extending the Cobb Douglas production function with a linear term in capital a closed from
solution still exists, as shown in Smith (2006) too.

3 For an overview see Feicht and Stummer (2010))
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2 The Model

The standard Ramsey growth model with CRRA consumer preferences and constant
returns to scale production technology is characterized by the following differential
equations including the transversality condition (TV C):

ċ
c

= 1
θ
(f ′(k)− δ − ρ) (1)

k̇
k

= f(k)
k

− δ − c
k

(2)

limt→∞ e−ρtc−θk = 0 (TV C) (3)

with consumption c, capital k and production f(k) in effective terms,4 depreciation of
capital δ ∈ [0, 1], consumer’s risk aversion parameter θ ∈ [0, 1], time preference rate
ρ > 0 and time t ≥ 0.

In the following we define consumption per capital by C := c
k
which implies

Ċ =

(
ċ

c
− k̇

k

)
C (4)

Multiplying equations (1) and (2) by C, then subtraction together with equation (4)
leads to

Ċ +

(
f(k)

k
− δ − 1

θ
(f ′(k)− δ − ρ)

)
C = C2 (5)

Additionally the transversality condition then reads

lim
t−→∞

e−ρtC−θk1−θ = 0 (6)

Defining

M(k(t)) :=
f(k)

k
− δ − 1

θ
(f ′(k)− δ − ρ) = C − Ċ

C
(7)

we observe, that equation (5) represents a Bernoulli differential equation:5

Ċ +M(k(t))C = C2 (8)

4 For simplicity we imputed no labor growth, but our results hold also for a constant growth rate
of labor

5Recapulate, that the Bernoulli differential equation is given by

dy

dt
+ P (t)y = Q(t)yn

with the general solution
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Since M(t) is still an arbitrary function, we need a further assumption in order to
make the differential equation (8) directly tractable. Therefore we assume the Ramsey
model to be recursive in the sense, that the ratio of consumption per capital C follows
a logistic growth process.6

Ċ + AC = BC2 (9)

with some constants7 A and B (A,B 6= 0).

Since the logistic differential equation is a special Bernoulli differential equation from
footnote 5 we obtain the general the solution of equation (9)

C(t) =
A
B

1− C1eAt
(10)

with some constant C1. Since equation (10) has only a meaningful economic interpreta-
tion if C(t) ≥ 0 for all t ≥ 0, the following proposition 1 shows the resulting parameter
restrictions for A,B and C1:

Proposition 1
Suppose C(t) =

A
B

1−C1eAt ≥ 0 for all t ≥ 0 then

(i) C1 ≤ 0 A > 0 B > 0

(ii) C1 < 1 A < 0 B < 0

(iii) C1 > 1 A > 0 B < 0

Proof :
Inserting every parameter constellation other than (i), (ii) or (iii) C(t) is either negative
or there exists a t′ > 0 such that C1e

At′ = 1.

y(t) =

[
(1− n)

∫
e(1−n)

∫
P (t′′)dt′′Q(t′)dt′ + const.

e(1−n)
∫
P (t′′)dt′′

] 1
1−n

with P (t) and Q(t) some arbitrary functions and n 6= 1.
6Smith (2006) supposes that the Ramsey model is only recursive, if production technology is Cobb-

Douglas and capital’s share equals the consumer’s risk parameter. Actually he showed this also for
a Cobb-Douglas production function extended by a linear term in capital. We show, that recursivity
can be reached in a even more general way.

7Note that for standard logistic growth we have A,B < 0. But in the widely adopted case of CRRA
consumer preferences, Cobb-Douglas production technology and capital’s share equals the coefficient
of consumer’s risk aversion A,B > 0 (see Smith (2006)). We show, that there is at least an academic
solution for A,B < 0 too.
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By inserting equation (9) into equation (7) the resulting equation can also be inter-
preted as a Bernoulli differential equation for f(k) with

f ′(k)− θ

k
f(k) =

[
(δ(1− θ)− (Aθ − ρ) + θ(B − 1)C(t)

][
f(k)

]0
(11)

This we can directly integrate for the production technology f(k)

f(k) = C2k
θ +

[
δ − Aθ − ρ

1− θ
+

θ(B − 1)

1− θ
C(t)

]
k (12)

with some constant C2 ≥ 0 due to economic relevancy. As we can already see CRRA
consumer preferences imply that production technology splits into a Cobb-Douglas
part and a linear part in capital k if C is constant or B = 1. Together this represents
an Ak-type production technology introduced by Jones and Manuelli (1990) and Jones
and Manuelli (1997). Inserting equation (12) into the capital accumulation equation
(2) we obtain

k̇ +

[
Aθ − ρ

1− θ
− Bθ − 1

1− θ
C(t)

]
︸ ︷︷ ︸

P (t)

k = C2︸︷︷︸
Q(t)

k

n︷︸︸︷
θ (13)

which is again a Bernoulli differential equation.8

From equation (10) and footnote 5 we obtain

e(1−θ)
∫
P (t)dt = e

∫
Aθ−ρ−

(θ− 1
B

)A

1−C1e
At dt = C3

(
C1e

At
)( 1

B
− ρ

A
)
(1− C1e

At)(θ−
1
B
) =: X(t) (14)

with some constant C3. For the evolution of capital k(t) in time together with the
standard substitution τζ = C1e

At′ and ζ = C1e
At implying dτ = Aτdt′, we obtain:

k(t) =
[
(1−θ)

∫ t
0 Q(t′)X(t′)dt′+C′

4

X(t)

] 1
1−θ

=

[
C2

(1−θ)

A(1−ζ)(θ−
1
B

)

∫ 1

0
τ (

1
B

− ρ
A

−1)(1−τ)0

(1−τζ)(
1
B

−θ)
dτ +

C′′
4

ζ(
1
B

− ρ
A

)(1−ζ)(θ−
1
B

)

] 1
1−θ

(15)

with some constants C ′
4 and C ′′

4 . Finally with the definition of hypergeometric func-
tions9

8Note the interesting feature, that capital accumulation does not directly depend anymore on
capital depreciation δ. However a dependence is still possible via the constants A and B within the
formula for the ratio of consumption per capital C.

9Please do not confuse c for consumption and c as a parameter of the general hypergeometric
function in the following. For an introduction in hypergeometric functions see Lebedev (1972),
Andrews, Askey, and Roy (2001) and Luke (1969). For a quick look in the worldwideweb see
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2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt = (1− z)−a

2F1(a, c− b; c; z
z−1

) (16)

and the functional equation Γ(x+1)
Γ(x)

= x of the Gamma function we end up with

k(t) =

[
C2

(1−θ)B
A−Bρ 2F1

(
1
B
−θ,1; 1

B
− ρ

A
+1;

C1e
At

C1e
At−1

)
+ C4

(eAt)
1
B

− ρ
A (1−C1eAt)θ−

1
B

] 1
1−θ

(17)

with some constant C4.

Observe that for case (iii) in proposition 1 (1−C1e
At)(θ−

1
B
) /∈ IR. Therefore we rule out

this case in the following. Equation (17) together with equation (10) principally define
also the consumption path c(t), but it is left to evaluate the transversality condition. It
turns out that for some parameter constellations this simplifies the solution drastically,
since TV C implies C = const. over time. The mathematics repeats more or less Smith
(2006) in a slightly more general sense:

Inserting equation (17) and equation (10) into TV C and after collecting the parameters
we obtain

lim
t→∞

(
A

B

)−θ


T1︷ ︸︸ ︷

C4(e
−At − C1)

1
B +

T2︷ ︸︸ ︷
C2

(1−θ)(A−Bρ)

A2B 2F̃1 (t) e
−ρt(1− C1e

At)θ

 = 0 (18)

with

2F̃1(t) = 2F1

(
1
B
−θ,1; 1

B
− ρ

A
+1;

C1e
At

C1e
At−1

)
(19)

The implications of TV C for k(t) are summarized in the following proposition

Proposition 2
(i) Suppose C1 ≤ 0 A > 0 and B > 0,

k(t) =

[
C2

(1−θ)B
A−Bρ 2F̃1 (t) +

C4

(eAt)(
1
B
− ρ

A) (1− C1eAt)θ−
1
B

] 1
1−θ

and

C(t) =
A
B

1− C1eAt

then

http://dlmf.nist.gov/ and http://mathworld.wolfram.com/HypergeometricFunction.html. For appli-
cations in economics including similar problems than ours see Abadir (1999), Boucekkine and Ruiz-
Tamarit (2008), Smith (2006), Germanà and Guerrini (2005), Scarpello and Ritelli (2003) and Hi-
raguchi (2009).
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(ii) Suppose C1 < 1 A < 0 and B < 0, then there exist C1, A and B such that
TV C is fulfilled without C(t) = const..

Proof :
We rewrite

e−ρtC−θk1−θ =

(
A

B

)−θ

[T1 + T2] (20)

with

T1 = C4(e
−At − C1)

1
B

T2 = T ′
2 = C2

(1−θ)B
A−Bρ

· 2F̃1(t) · e(Aθ−ρ)t(e−At − C1)
θ

T2 = T ′′
2 = C2

(1−θ)B
A−Bρ

· 2F̃1(t)

(1−C1eAt)−
Aθ−ρ

A

· (e−At − C1)
ρ
A

T2 = T ′′′
2 = C2

(1−θ)B
A−Bρ

· 2F̃1(t)
ln(1−C1eAt)

· ln(1− C1e
At)e(Aθ−ρ)t(e−At − C1)

θ

T2 = T ′′′′
2 = C2

(1−θ)B
A−Bρ

· 2F̃1(t) · e−ρt(1− C1e
At)θ

(21)
were we collected the parameters in a proper manner for the following proof. Suppose
C2, C4 6= 0 and A−Bρ 6= 0 in the following.

1. For A > 0, B > 0 and C1 ≤ 0 firstly we have limt→∞ T1 = −C
1
B
1 = 0 iff C1 = 0.

Secondly we have limt→∞
C1eAt

C1eAt−1
= 1 and thirdly from http://dlmf.nist.gov/15.4#ii

we have the following limit theorems for hypergeometric functions:

(a) c− a− b > 0, then limz→1 2F1(a, b; c; 1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(b) c− a− b < 0, then limz→1
2F1(a,b;c;1)
(1−z)c−a−b = Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b)

(c) c− a− b = 0, then limz→1
2F1(a,b;c;1)
− ln(1−z)

= Γ(a+b)
Γ(a)Γ(b)

Altogether we see, that the convergence of the hypergeometric part of (TV C)
depends on sign{Aθ− ρ} since from equation (19) we obtain c− a− b = Aθ− ρ.
Together with the representations T ′

2, in case of Aθ − ρ > 0, T ′′
2 in case of

Aθ − ρ < 0 and T ′′′
2 in case of Aθ − ρ = 0 for T2, we directly obtain T2 → 0 iff

C1 = 0.

2. A,B < 0 and C1 < 1. We directly obtain limt→∞ T1 = 0 and since limt→∞
C1eAt

C1eAt−1
=

0 in this case, together with 2F1(a, b; c; 0) = 1 by using T ′′′′
2 for T2 we obtain

limt→∞ T2 = 0. Thus in this case we do not need C1 = 0 which implies a non
linear dependence between consumption and capital.
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Corollary 1
1. For A > 0, B > 0 and C1 ≤ 0 we have C(t) = A

B
implying

k(t) =
[
C2

(1−θ)B
A−Bρ

+ C4e
−(A

B
−ρ)t
] 1

1−θ

c(t) = A
B

[
C2

(1−θ)B
A−Bρ

+ C4e
−(A

B
−ρ)t
] 1

1−θ
(22)

2. For A < 0, B < 0 and C1 < 1 we generally have C(t) =
A
B

1−C1eAt and

k(t) =

[
C2(1−θ)B
A−Bρ 2F1

(
1
B
−θ,1; 1

B
− ρ

A
+1;

C1e
At

C1e
At−1

)
+ C4

(eAt)
1
B

− ρ
A (1−C1eAt)θ−

1
B

] 1
1−θ

c(t) =
A
B

1−C1eAt

[
C2(1−θ)B
A−Bρ 2F1

(
1
B
−θ,1; 1

B
− ρ

A
+1;

C1e
At

C1e
At−1

)
+ C4

(eAt)
1
B

− ρ
A (1−C1eAt)θ−

1
B

] 1
1−θ

(23)

Proof :
The proof is directly given by proposition 2 and inserting c(t) = C(t)k(t) for consump-
tion.

In order to embed this calculations in the literature observe that from equation (12)
the standard case of Cobb-Douglas production technology and capital’s share equals
consumer’s risk aversion parameter is included in our setup if A = 1

θ
(δ(1 − θ) + ρ)

together with B = 1 and the endogenous growth extension of Smith (2006) can be
found for 0 < A < 1

θ
(δ(1 − θ) + ρ) also with B = 1. Furthermore inserting the result

C = A
B
of proposition 2 for A,B > 0 into equation (13) we obtain a standard Bernoulli

differential equation with constant coefficients

k̇ +Ak = Bkθ (24)

with A A
B

−ρ

1−θ
and B = C2. This is widely used in growth theory especially with the

Solow and the Ramsey model. Although this also a standard undergraduate textbook
case (i.e. A = 0B = 1 and θ = 1

3
Forster (2011)) for non-uniqueness of solutions if

k(0) = 0 this is often neglected in economic papers. But recently this indeterminacy
also discussed in the economic literature Bose (2007) and Hakenes and Irmen (2008).
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We end with an explicit solution for A,B < 0,where we chose a set of parameters which
leads to a compact solution: A = −1, B = −4

3
, θ = 1

4
, ρ = 1

2
, δ = 1

2
, C2 = 1 and

C4 =
√
2, which implies

2F̃1(t) = 2F1

(
−1,1; 1

2
;

C1e
At

C1e
At−1

)
=

2e2t + 2

2e2t − 2
(25)

since from dlmf.nist.org.gov/15.4 we have

2F1 (−a,a; 1
2
;−z2) =

1

2

((√
1 + z2 + z

)2a
+
(√

1 + z2 − z
)2a)

(26)

Altogether we end up with

k(t) =
[
coth(1

2
(t+ ln

√
2))
] 4

3

c(t) = 3
2−e−2t ·

[
coth(1

2
(t+ ln

√
2))
] 4

3

C(t) = 3
2−e−2t

(27)

In the limit t −→ ∞ we obtain

limt−→∞ k(t) = k∞ = 1

limt−→∞ c(t) = c∞ = 3
2

limt−→∞ C(t) = C∞ = 3
2

(28)

Graphically this is shown in figure 1
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Figure 1:
Evolution in time of capital, consumption and consumption per capital for A = −1,

B = −4
3
, θ = 1

4
, ρ = 1

2
, δ = 1

2
, C2 = 1 and C4 =

√
2.
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3 Discussion

Our approach closed a small gap in the discussion about closed form solutions in eco-
nomic growth models. Although the mathematics mainly repeats only some older
papers we could show that there is a deeper dependence between standard utility
functions and standard technology functions, since our inverse approach showed that
CRRA consumer preferences together with logistic consumption per capital growth
path consequently requires a Cobb-Douglas part in the production function. Addition-
ally at least for academic purpose we obtain a closed form solution with a non constant
ratio of consumption per capital. Finally, we think that with the use of hypergeomet-
ric functions, there can be found closed form solutions in a wide range of economic
models beyond the Ramsey model like a Sidrauski-type or a Lucas-Uzawa-type model,
since firstly hypergeometric functions include many standard functions and secondly
via some standard math programs these functions are easily accessible.
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