Statistics A - Summer term 2023

Exercise 2

1. Within a sector we have $N=12.100$ single firms. Since there is no total official statistic we have drawn a random sample of $n=225$ and collected the single profit G of each firm. Within this sample we obtained an average profit of $600.000 €$ with a standard deviation of $\hat{\sigma}$ of $90.000 €$.
(a) Calculate the standard deviation of the average profit?
(b) Calculate a confidence interval of μ for probability of error of $\alpha=5 \%$
(c) Extrapolate for a probability of error $\alpha=1 \%$ a confidence intervall for the whole sector.
2. A machine is cutting steel rods of a specific length. Out of the total production of $N=150$, we take a random sample of $n=9$. Measuring their length, we obtain: $184,2 \mathrm{~mm}, 182,6 \mathrm{~mm}, 185,3 \mathrm{~mm}, 184,5 \mathrm{~mm}, 186,2 \mathrm{~mm}, 183,9 \mathrm{~mm}, 185,0 \mathrm{~mm}, 187,1 \mathrm{~mm}, 184,4$ mm.

Due to experience, we know that the parent distribution is normally distributed.
(a) Calculate unbiased estimators for mean and variance of the parent distribution.
(b) Calculate for μ a cofidence interval for the confidence leveles 0,9 and 0,99 .
3. Within a random sample of 144 persons in WHV 75% answered, they would like to shop on sundays.
(a) Calculate a confidence interval for the proportion of inhabitants of WHV, who would prefer a general shop opening on sundays for a probability of error of $\alpha=0,05$ and $\alpha=0,1$).
(b) Calculated the confidence level, if the confidence interval would be represented by $75 \% \pm 10 \%$.
4. A provider of mobile games collected the playing time of $n=120$ randomly drawn users. We suppose, that the playing times x_{i} are realizations of a normally distributed variable and obtain the following data:

$$
\sum_{i=1}^{120} x_{i}=21840 \quad \sum_{i=1}^{120} x_{i}^{2}=4868856
$$

(a) Calculate a confidence interval for the variance of the playing time given a confidence level of 99%.
(b) Calculate the confidence interval of the standard deviation for a probability of error of $\alpha=1 \%$.

